

Inclusive Science Curriculum Overview

Adapted Science Curriculum for SEND and Behavioural Challenges: Reception to Year 11 HOPECFI Science Curriculum has been tailored for children with Special Educational Needs and Disabilities (SEND) and challenging behaviours, using multi-sensory approaches, structured routines, and real-world applications. Activities focus on small, manageable steps and a calm, inclusive environment to promote engagement and confidence.

Contents

- 1. Reception
- 2. Year One
- 3. Year Two
- 4. Year Three
- 5. Year Four
- 6. Year Five
- 7. Year Six
- 8. Year Seven
- 9. Year Eight
- 10. Year Nine
- 11. Year Ten
- 12. Year Eleven
- 13. Cross-Curricular Integration for SEND
- 14. Support Strategies for SEND

1. Reception: Exploring the World Around Us

Autumn Term

Me and My Small World

- Explore basic body parts and similarities/differences between people.
- o Interact with small creatures and toys.
- Maths Link: Sort objects by size, shape, or function; compare "bigger," "smaller," or "the same."

What's in My Basket?

- Identify sensory properties of fruits, vegetables, and everyday items.
- Discuss how these items grow or are used.
- Maths Link: Measure items using non-standard units and create patterns.

Spring Term

Changes in Winter

- Observe seasonal changes (e.g., bare trees, frosty mornings).
- Learn how animals adapt (e.g., hibernation).
- Maths Link: Collect and count objects, like pinecones or snowflakes.

Let It Flow

- Investigate water properties (pouring, splashing).
- Explore freezing and melting.
- Maths Link: Use containers to measure and compare capacities.

Summer Term

Animal Detectives

- Explore local wildlife using magnifying glasses.
- Maths Link: Count features (e.g., legs, spots) and create simple charts.

Pushes and Pulls

- Experiment with motion (rolling balls, dragging toys).
- Maths Link: Explore 3-D shapes like spheres and cubes.

2. Year 1: Exploring Science

- Biology: Human body parts and five senses.
- Chemistry: Material properties (waterproof, hard/soft).
- Sustainability: Recycling and reducing waste.

3. Year 2: Living Things and Habitats

- **Biology**: Needs for survival, plant growth, and habitats.
- Sustainability: Plastic impact and conservation projects.
- Cross-Curricular Integration: Use of charts, posters, and outdoor observations.

4. Year 3: Building Knowledge

- Biology: Skeletons, muscles, and balanced diets.
- Chemistry: Rocks, fossils, and soil composition.
- Physics: Light and shadow experiments.

5. Year 4: Advanced Observation

- Biology: Classify living things and habitats.
- Chemistry: States of matter (solid, liquid, gas).
- Sustainability: Energy conservation and deforestation awareness.

6. Year 5: Exploring Systems

- Physics: Forces (friction, air resistance) and space.
- Biology: Life cycles, plant reproduction, and the circulatory system.
- Sustainability: Plastic pollution and global warming projects.

7. Year 6: Connecting Concepts

- Biology: Human body systems and biodiversity.
- Physics: Electricity (circuits) and light pollution.
- Sustainability: Renewable energy models.

8. Year 7: Foundations of Science

- Biology: Cell structure and reproduction.
- Chemistry: Particles, elements, and compounds.
- Physics: Forces and energy transfers.
- Sustainability: Human impact on ecosystems.

9. Year 8: Expanding Knowledge

- Biology: Microbes, respiration, and circulation.
- Chemistry: The periodic table and chemical reactions.
- Physics: Waves and magnetism.
- Sustainability: Projects on food waste and biodiversity.

10. Year 9: Transition to GCSE

Biology: Inheritance, evolution, and homeostasis.

- **Chemistry**: Atomic structure and rates of reaction.
- Physics: Newton's laws and energy conservation.
- Sustainability: Climate change and renewable energy projects.

11. Year 10: GCSE Preparation

- **Biology**: Pathogens, bioenergetics, and ecology.
- Chemistry: Organic chemistry and atmospheric changes.
- Physics: Electromagnetic waves and motion.

12. Year 11: GCSE Preparation

- Biology: Genetics, adaptations, and human body systems.
- Chemistry: Analytical methods and sustainable development.
- Physics: Space physics and magnetism.
- Themed Projects: Exam prep through real-world applications.

13. Cross-Curricular Integration for SEND

a) Maths

Visual Graphs and Data Representation:

- Use colourful, large-print graphs and charts to represent data collected during experiments (e.g., plant growth, weather patterns, or energy use).
- Provide tactile graphing tools like Velcro charts or 3D models for learners who benefit from physical interaction.
- Simplify mathematical concepts by using real-life examples, such as counting
 objects, measuring water capacity, or charting animal sightings.

Simple Calculations:

- Break down complex calculations into manageable steps with visual aids like number lines, pictorial representations, and manipulatives.
- Link calculations to practical experiments (e.g., finding the average plant height over time or calculating simple speeds using toy cars).
- Provide scaffolding tools, such as calculators or pre-made templates, to support independence.

• Hands-On Measurements:

- Engage learners in measuring length, weight, and capacity using everyday objects (e.g., measuring tape, scales, beakers).
- Use digital measurement tools (e.g., electronic scales or light meters) for added accessibility.

 Incorporate opportunities to measure in different environments (e.g., measuring the height of plants in a school garden or water levels in an outdoor water table).

b) Literacy

Accessible Science Texts:

- Use large-print, easy-read science books with vivid illustrations and simplified language.
- Offer audio versions or read-aloud sessions for children who struggle with reading.
- o Introduce dual-language resources for EAL learners, if applicable.

Report Writing:

- Scaffold report-writing tasks by providing templates with clear headings (e.g., "What We Did," "What We Found Out").
- Allow alternative formats like oral reports, drawings, or videos for children who find writing challenging.
- Encourage collaborative group writing for peer support and shared learning.
- Scientific Vocabulary Development:
 - Introduce key scientific terms with picture-word associations (e.g., diagrams
 of a plant labelled with "stem," "leaf," etc.).
 - Create personal glossaries or word banks for repeated reference during lessons.
 - Use flashcards or interactive games to reinforce vocabulary.

c) Art

• Model-Making:

- Engage learners in constructing models of scientific concepts (e.g., solar systems, animal habitats, or body systems) using accessible materials like clay, recycled items, or LEGO.
- Provide adaptive tools (e.g., larger handles for paintbrushes or sculpting tools) for children with fine motor challenges.
- Use group projects to foster collaboration and encourage creative thinking.

Creative Diagrams:

- o Integrate art into lessons by having children draw labelled diagrams (e.g., parts of a flower, food chains, or circuits).
- Offer pre-drawn outlines for learners who may struggle with freehand drawing but enjoy colouring and labelling.
- Incorporate digital tools, such as drawing apps or interactive whiteboards, for tech-savvy learners.

Sensory Art:

 Include sensory materials in art projects, such as sand, leaves, or textured paper, to help children connect with scientific concepts (e.g., textures of soil or habitats).

d) Physical Development

Outdoor Experiments:

- Use the outdoor environment for hands-on learning (e.g., measuring shadows, observing weather, or conducting soil experiments).
- Create sensory-rich outdoor activities, such as planting and tending to a garden, that build fine and gross motor skills.
- Include simple physical challenges like collecting natural materials or setting up experiments in a designated outdoor space.

Gardening:

- Engage children in planting seeds, watering plants, and observing growth over time to reinforce biology concepts.
- Introduce simple tools (e.g., child-sized trowels or watering cans) to develop coordination and responsibility.
- o Incorporate sensory elements, such as smelling herbs or touching different plant textures, to enhance engagement.

Sensory Activities:

- Offer sensory play experiences linked to science topics, such as water tables, sandboxes, or textured slime for exploring states of matter.
- Use movement-based activities (e.g., acting out animal behaviours or mimicking the movement of waves) to build kinaesthetic connections to concepts.
- Include sensory-friendly options like quiet zones, noise-cancelling headphones, or weighted blankets for children who may feel overstimulated.

e) Additional Enhancements

Technology Integration:

- Use interactive software, simulations, or videos to demonstrate abstract concepts like the solar system, chemical reactions, or ecosystems.
- Introduce adaptive devices, such as touchscreens or voice-activated tools, to increase accessibility for learners with physical or communication challenges.

Collaborative Learning:

- Foster teamwork through group experiments, projects, and discussions, encouraging communication and social development.
- Pair learners with different strengths to support peer teaching and shared success.

Behavioural Support:

- Establish clear, consistent routines to help children anticipate and prepare for transitions between activities.
- Use visual schedules, first-then boards, and positive reinforcement strategies to maintain engagement and reduce anxiety.
- Build emotional regulation skills by incorporating mindfulness or relaxation exercises before and after lessons.

14. Support Strategies for SEND

a) Multi-Sensory Learning

Tactile Elements:

- Incorporate hands-on activities like building models, using sensory materials (e.g., textured paper, clay), or handling physical objects (e.g., leaves, rocks, magnets) to explore scientific concepts.
- Offer tactile learning aids, such as raised-line diagrams, Braille labels, or textured 3D models for concepts like cells, habitats, or the solar system.

Auditory Enhancements:

- Use sound-based activities, such as listening to animal calls, exploring sound waves with musical instruments, or using audio recordings to explain complex topics.
- Provide headphones with audio lessons or calming music to help auditory learners stay focused during independent work.

Visual Tools:

- Use bright, high-contrast visuals, infographics, and colour-coded charts to explain data or processes.
- Employ interactive digital resources like videos, animations, and simulations to visually demonstrate abstract or complex concepts.
- Integrate augmented reality (AR) apps for immersive experiences, such as exploring virtual ecosystems or inside the human body.

Cross-Sensory Integration:

- Blend sensory inputs (e.g., combine visual diagrams with auditory explanations and physical activities) to reinforce learning.
- Create sensory bins with themed materials (e.g., sand and shells for marine habitats or different soil types for geology lessons).

b) Structured Routines

Consistent Lesson Frameworks:

Begin every lesson with a brief overview using visual or verbal cues (e.g.,
 "Today we will learn about plants, observe seeds, and measure growth").

 End with a review or reflection activity to reinforce the day's learning and prepare for the next lesson.

Visual Schedules:

- Display daily schedules with pictures or symbols to indicate activities and transitions.
- Use first-then boards to outline immediate tasks (e.g., "First we plant seeds, then we water them").

Checklists and Timers:

- Provide simple checklists for multi-step tasks, such as conducting an experiment or recording observations.
- Use visual timers to help learners manage time and anticipate transitions.

Structured Breaks:

Build short, structured sensory or physical breaks into the schedule to help learners reset and maintain focus.

c) Calm Environment

Sensory-Friendly Spaces:

- Designate quiet zones with calming tools, such as noise-cancelling headphones, weighted blankets, or fidget toys, for learners who need sensory regulation.
- Use dimmable lighting, soft colours, and minimal clutter to reduce sensory overload.

Calming Activities:

- Include relaxation or mindfulness exercises, such as deep breathing or guided imagery, before challenging tasks.
- Use calming sensory materials, like kinetic sand, slime, or water play, to ease transitions or reduce anxiety.

Predictable and Safe Setting:

- Arrange the classroom with clearly defined learning areas (e.g., a hands-on experiment table, a quiet reading corner) to help children navigate the space confidently.
- Establish clear, simple rules and expectations for behaviour, reinforced with visual prompts.

d) Individualised Support

Tailored Instruction:

 Differentiate tasks to match individual abilities, offering simplified or extended challenges as needed.

 Provide task cards, step-by-step guides, or visual aids for learners who benefit from additional guidance.

Assistive Technology:

- Use voice-to-text tools for writing assignments, speech-generating devices for communication, or screen readers for visually impaired learners.
- Incorporate interactive whiteboards, apps, or tablets with accessible learning software to engage learners at their level.

• Personalised Learning Plans:

- Develop Individual Education Plans (IEPs) with clear, measurable goals that align with each learner's needs and strengths.
- Regularly review progress and adapt teaching strategies to ensure ongoing growth and engagement.

e) Positive Reinforcement

Celebrating Effort and Milestones:

- Use stickers, certificates, or verbal praise to acknowledge participation, progress, and effort.
- Celebrate individual achievements with personalised rewards or "show-andtell" sessions to share successes with peers.

Behaviour-Specific Praise:

- Reinforce positive behaviours with specific feedback (e.g., "Great job focusing on your experiment!").
- Use behaviour tracking tools, such as token boards or reward charts, to visually represent progress.

Peer Recognition:

Foster a supportive environment where peers acknowledge each other's accomplishments, building a culture of encouragement.

Intrinsic Motivation:

 Help learners reflect on their successes by discussing how their effort led to achievements, fostering a sense of pride and internal motivation.

f) Additional Enhancements

Social-Emotional Learning (SEL):

- Incorporate SEL activities to help learners recognise and regulate emotions, build relationships, and develop resilience in the face of challenges.
- Use role-play or collaborative activities to practice empathy, teamwork, and conflict resolution.

Behaviour Support Plans:

- Develop individualised behaviour plans for learners with challenging behaviours, including strategies like de-escalation techniques and clear consequences.
- Train staff in proactive behaviour management to anticipate and address potential triggers.

• Parental Involvement:

- Provide parents with resources and updates on their child's progress to encourage reinforcement of learning at home.
- Collaborate with families to align support strategies between school and home environments.

Professional Development for Staff:

Offer ongoing training in inclusive teaching practices, assistive technology, and behaviour management to equip educators with tools to support diverse learners effectively.

